An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete
نویسندگان
چکیده
Abstract Concrete is an indisputable material for the construction of various types of structures in the modern advancement of civil infrastructures. Concrete is strong in compression but weak in tension and shear. To eliminate those problems, the introduction of fiber was brought in as an alternative to developing concrete in view of enhancing its tensile and shears strength as well as improving its ductile property. Hence, the purpose of this study was to investigate the mechanical behavior of concrete reinforced with macro (structural) synthetic fibers. To determine these properties experimental work was carried out. Four batches of concrete were cast: one with no fibers and the remaining three with three different volume fractions fibers of 0.33, 0.42 and 0.51%, respectively. Concrete specimens (cubes, prisms and beams) were cast to determine the mechanical behavior such as compressive, tensile, shear strength and stress-strain relationships. Test results showed that macro synthetic fiber enhanced the compressive strength insignificantly. However, macro synthetic fibers at 0.33, 0.42 and 0.51% volume fractions improved the tensile strength by at least 10, 15 and 14%, respectively, compared to the control specimen. Similarly the ultimate shear strength was increased significantly by at least 15, 45 and 65% for macro synthetic fibers of 0.33, 0.42 and 0.51% volume fractions, respectively, compared to the control beams. The failure of plain concrete specimens was sudden (brittle) for both the tensile and shear strength tests. However, the concrete reinforced with macro synthetic fibers showed more ductile behavior compared to the plain concrete. Macro synthetic fibers improved the ultimate strain value by at least 50, 60 and 60% for macro fibers of 0.33, 0.42 and 0.51% volume fractions, respectively.
منابع مشابه
Mechanical Behavior of Hybrid Fiber Reinforced High Strength Concrete with Graded Fibers
Brittleness, which was the inherent weakness in High Strength Concrete (HSC), can be avoided by reinforcing the concrete with discontinuous fibers. Reinforcing HSC with more than one fiber is advantageous in an overall improvement of the mechanical performance of the composite. In this experimental study, Hybrid Fiber Reinforced High Strength Concrete (HyFR-HSC) mixes were formed by blending si...
متن کاملFlexural Behavior of Lightweight Concrete Beams Reinforced with GFRP Bars and Effects of the Added Micro and Macro Fiber
This study evaluated the effect of macro steel fiber (SF), micro glass fiber (GF) and micro polypropylene fiber (PF) in lightweight aggregate concrete, (LWAC) beams reinforced with glass fiber reinforced polymer (GFRP) bars. Firstly, concrete mixtures with different volume fractions of GF, PF and SF were tested up to compressive strength, then determine the optimum fiber content GF, PF and SF a...
متن کاملExperimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)
The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...
متن کاملExperimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)
The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...
متن کاملAnalytical and numerical modeling of erosive projectiles into steel fiber reinforced concrete target
In this paper, modeling of high speed projectiles with different nose shapes, penetrating into steel fiber reinforced concrete is investigated. This is a novel study because it considers the length to diameter ratio of steel fiber as well as projectile length to diameter ratio and volume fraction of fiber used in concrete matrix on the impact resistance of steel fiber reinforced concrete fibers...
متن کامل